Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Heating buildings using fossil fuels such as natural gas, propane and oil makes up a significant proportion of the aggregate carbon emissions every year. Because of this, there is a strong interest in decarbonizing residential heating systems using new technologies such as electric heat pumps. In this paper, we conduct a data-driven optimization study to analyze the potential of replacing gas heating with electric heat pumps to reduce CO 2 emission in a city-wide distribution grid. We conduct an in-depth analysis of gas consumption in the city and the resulting carbon emissions. We then present a flexible multi-objective optimization (MOO) framework that optimizes carbon emission reduction while also maximizing other aspects of the energy transition such as carbon-efficiency, and minimizing energy inefficiency in buildings. Our results show that replacing gas with electric heat pumps has the potential to cut carbon emissions by up to 81%. We also show that optimizing for other aspects such as carbon-efficiency and energy inefficiency introduces tradeoffs with carbon emission reduction that must be considered during transition. Finally, we present a detailed analysis of the implication of proposed transition strategies on the household energy consumption and utility bills, electric grid upgrades, and decarbonization policies. We compute the additional energy demand from electric heat pumps at the household as well as the transformer level and discuss how our results can inform decarbonization policies at city scale.more » « less
- 
            Residential heating, primarily powered by natural gas, accounts for a significant portion of residential sector energy use and carbon emissions in many parts of the world. Hence, there is a push towards decarbonizing residential heating by transitioning to energyefficient heat pumps powered by an increasingly greener and less carbon-intensive electric grid. However, such a transition will add additional load to the electric grid triggering infrastructure upgrades, and subsequently erode the customer base using the gas distribution network. Utilities want to guide these transition efforts to ensure a phased decommissioning of the gas network and deferred electric grid infrastructure upgrades while achieving carbon reduction goals. To facilitate such a transition, we present a network-aware optimization framework for decarbonizing residential heating at city scale with an objective to maximize carbon reduction under budgetary constraints. Our approach operates on a graph representation of the gas network topology to compute the cost of transitioning and select neighborhoods for transition. We further extend our approach to explicitly incorporate equity and ensure an equitable distribution of benefits across different socioeconomic groups. We apply our framework to a city in the New England region of the U.S., using real-world gas usage, electric usage, and grid infrastructure data. We show that our networkaware strategy achieves 55% higher carbon reductions than prior network-oblivious work under the same budget. Our equity-aware strategy achieves an equitable outcome while preserving the carbon reduction benefits of the network-aware strategy.more » « less
- 
            Most buildings still rely on fossil energy --- such as oil, coal and natural gas --- for heating. This is because they are readily available and have higher heat value than their cleaner counterparts. However, these primary sources of energy are also high pollutants. As the grid moves towards eliminating CO 2 emission, replacing these sources of energy with cleaner alternatives is imperative. Electric heat pumps --- an alternative and cleaner heating technology --- have been proposed as a viable replacement. In this paper, we conduct a data-driven optimization study to analyze the potential of reducing carbon emission by replacing gas-based heating with electric heat pumps 1 . We do so while enforcing equity in such transition. We begin by conducting an in-depth analysis into the energy patterns and demographic profiles of buildings. Our analysis reveals a huge disparity between lower and higher income households. We show that the energy usage intensity for lower income homes is 24% higher than higher income homes. Next, we analyze the potential for carbon emission reduction by transitioning gas-based heating systems to electric heat pumps for an entire city. We then propose equity-aware transition strategies for selecting a subset of customers for heat pump-based retrofits which embed various equity metrics and balances the need to maximize carbon reduction with ensuring equitable outcomes for households. We evaluate their effect on CO 2 emission reduction, showing that such equity-aware carbon emission reduction strategies achieve significant emission reduction while also reducing the disparity in the value of selected homes by 5X compared to a carbon-first approach.more » « less
- 
            null (Ed.)While ride-sharing has emerged as a popular form of transportation in urban areas due to its on-demand convenience, it has become a major contributor to carbon emissions, with recent studies suggesting it is 47% more carbon-intensive than personal car trips. In this paper, we examine the feasibility, costs, and carbon benefits of using electric bike-sharing---a low carbon form of ride-sharing---as a potential substitute for shorter ride-sharing trips, with the overall goal of greening the ride-sharing ecosystem. Using public datasets from New York City, our analysis shows that nearly half of the taxi and rideshare trips in New York are shorts trips of less than 3.5km, and that biking is actually faster than using a car for ultra-short trips of 2km or less. We analyze the cost and carbon benefits of different levels of ride substitution under various scenarios. We find that the additional bikes required to satisfy increased demand from ride substitution increases sub-linearly and results in 6.6% carbon emission reduction for 10% taxi ride substitution. Moreover, this reduction can be achieved through a hybrid mix that requires only a quarter of the bikes to be electric bikes, which reduces system costs. We also find that expanding bike-share systems to new areas that lack bike-share coverage requires additional investments due to the need for new bike stations and bike capacity to satisfy demand but also provides substantial carbon emission reductions. Finally, frequent station repositioning can reduce the number of bikes needed in the system by up to a third for a minimal increase in carbon emissions of 2% from the trucks required to perform repositioning, providing an interesting tradeoff between capital costs and carbon emissions.more » « less
- 
            null (Ed.)Electric bikes have emerged as a popular form of transportation for short trips in dense urban areas and are being increasingly adopted by bike share programs for easy accessibility to riders. Motivated by the rising popularity of electric bikes, a form of an electric vehicle, we study the research question of how to design a zero-carbon electric bike share system. Specifically we study the challenges in designing solar charging stations for electric bike systems that enable either net-zero or a fully zero-carbon operation. We design a prototype two bike solar charging station to demonstrate the feasibility of our approach. Using insights and data from our prototype solar charging station, we then conduct a data driven analysis of the costs and benefits of converting an entire bike system into one powered using solar charging stations. Using empirical analysis, we determine the panel and battery capacity for each station, and perform a feasibility evaluation of the system using 8 months of ridership data. Our results show that equipping each bike station with a single grid-tied solar panel is adequate to meet the annual charging demand from electric bikes and achieve net-zero operation using net-metering. For an off-grid setup, our analysis shows that a bike station needs twice as many solar panels, on average, along with a 1.8kWh battery, with the busiest bike station needing 6× more solar capacity than in the net-metering case. Our analysis also reveals a tradeoff between the array size and the battery size needed to achieve true-zero carbon operation for the electric bike share system.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
